Exercise 3

Use established properties of moduli to show that when $\left|z_{3}\right| \neq\left|z_{4}\right|$,

$$
\frac{\operatorname{Re}\left(z_{1}+z_{2}\right)}{\left|z_{3}+z_{4}\right|} \leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\left|\left|z_{3}\right|-\left|z_{4}\right|\right|}
$$

Solution

Inequality (3) in the text states that for a complex number z,

$$
\begin{equation*}
\operatorname{Re} z \leq|\operatorname{Re} z| \leq|z| \tag{3}
\end{equation*}
$$

Inequality (8) in the text states that for two complex numbers, z_{1} and z_{2},

$$
\begin{equation*}
\left|z_{1} \pm z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right| . \tag{8}
\end{equation*}
$$

Use inequality (8) to make the denominator smaller and inequality (3) to make the numerator bigger (the fraction becomes bigger as a result in both cases).

$$
\frac{\operatorname{Re}\left(z_{1}+z_{2}\right)}{\left|z_{3}+z_{4}\right|} \leq \frac{\left|z_{1}+z_{2}\right|}{\| z_{3}\left|-\left|z_{4}\right|\right|}
$$

Apply the triangle inequality to make the numerator even bigger.

$$
\leq \frac{\left|z_{1}\right|+\left|z_{2}\right|}{\| z_{3}\left|-\left|z_{4}\right|\right|}
$$

